Multilinear Analysis on Metric Spaces
نویسندگان
چکیده
The multilinear Calderón–Zygmund theory is developed in the setting of RD-spaces, namely, spaces of homogeneous type equipped with measures satisfying a reverse doubling condition. The multiple-weight multilinear Calderón–Zygmund theory in this context is also developed in this work. The bilinear T1-theorems for Besov and Triebel–Lizorkin spaces in the full range of exponents are among the main results obtained. Multilinear vector-valued T1 type theorems on Lebesgue spaces, Besov spaces, and Triebel–Lizorkin spaces are also proved. Applications include the boundedness of paraproducts and bilinear multiplier operators on products of Besov and Triebel–Lizorkin spaces. 2010 Mathematics Subject Classification. Primary 42B20, 42B25, 42B35; Secondary 35S50, 42C15, 47G30, 30L99.
منابع مشابه
Commutators of Multilinear Singular Integral Operators on Non-homogeneous Metric Measure Spaces
Abstract. Let (X, d, μ) be a metric measure space satisfying both the geometrically doubling and the upper doubling measure conditions, which is called nonhomogeneous metric measure space. In this paper, via a sharp maximal operator, the boundedness of commutators generated by multilinear singular integral with RBMO(μ) function on non-homogeneous metric measure spaces in m-multiple Lebesgue spa...
متن کاملUniform estimates for paraproducts and related multilinear multipliers
In this paper, we prove some uniform estimates between Lebesgue and Hardy spaces for operators closely related to the multilinear paraproducts on Rd. We are looking for uniformity with respect to parameters, which allow us to disturb the geometry and the metric on Rd.
متن کامل$C$-class and $F(psi,varphi)$-contractions on $M$-metric spaces
Partial metric spaces were introduced by Matthews in 1994 as a part of the study of denotational semantics of data flow networks. In 2014 Asadi and {it et al.} [New Extension of $p$-Metric Spaces with Some fixed point Results on $M$-metric paces, J. Ineq. Appl. 2014 (2014): 18] extend the Partial metric spaces to $M$-metric spaces. In this work, we introduce the class of $F(psi,varphi)$-contrac...
متن کاملOn metric spaces induced by fuzzy metric spaces
For a class of fuzzy metric spaces (in the sense of George and Veeramani) with an H-type t-norm, we present a method to construct a metric on a fuzzy metric space. The induced metric space shares many important properties with the given fuzzy metric space. Specifically, they generate the same topology, and have the same completeness. Our results can give the constructive proofs to some probl...
متن کاملOn fixed point theorems in fuzzy metric spaces using a control function
In this paper, we generalize Fuzzy Banach contraction theorem establishedby V. Gregori and A. Sapena [Fuzzy Sets and Systems 125 (2002) 245-252]using notion of altering distance which was initiated by Khan et al. [Bull. Austral.Math. Soc., 30(1984), 1-9] in metric spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012